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Abstract 
 
The PAR3D code is a general-purpose numerical model that uses parallel processors 
for computing three-dimensional incompressible flow. Its modeling capabilities 
include turbulence, bubble plumes, and gas transfer. The present work concerns 
application of the model to bubble plumes in water, and the gas transfer associated 
therewith. PAR3D employs a k-, model for turbulence, a large-eddy model for gas 
transfer at the free surface, and a Levich (single-bubble) formula for gas transfer in 
the plume. The bubble diameter is used as an empirical tuning parameter in the latter 
formula. Computed results for velocity and gas-transfer are compared with tank-test 
data for bubble diffusers submerged in 10 to 33 feet (3 to 10 meters) of water. 
 
Model Description 
 
PAR3D is a descendent of the MAC3D code (Bernard 1995, 1998), previously 
developed for sequential (scalar and vector) computers at the ERDC Waterways 
Experiment Station. Unlike its predecessor, which was limited to fixed grids, rigid 
boundaries, and single processors, PAR3D incorporates deforming grids, quasi-static 
free-surface displacement, and multiple processors. Its modeling capabilities include 
turbulence (with buoyancy), transfer and transport of dissolved gas, and flow driven 
by bubble plumes.  
 
PAR3D uses finite-volume discretization with curvilinear marker-and-cell (MAC) 
grids to solve the Reynolds-Averaged Navier-Stokes (RANS) equations for 
incompressible flow. The MAC designation refers to the volume-averaged evaluation 
of scalar quantities inside the grid cells, and the surface-averaged evaluation of 
normal vector components on the cell faces. Grids are constructed such that, 
regardless of their shape in Cartesian (xyz) space, they map into a rectangular grid in 
computational (ijk) space. Integer ijk-coordinates then serve as indices for identifying 
grid cells, and as coordinates for locating grid nodes in the computational space. 
Grids ordered in this way are generally called structured grids. 
 
The RANS momentum equation is discretized in space with a three-point upwind 
approximation for advective terms, and a central-difference approximation for 
diffusion terms. Discretization in time is achieved using a two-level (first-order) 
approximation for time derivatives, with time-lagged (explicit) evaluation of 
advective terms, and time-advanced (implicit) evaluation of diffusion terms. 
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The solution scheme for the momentum equation entails a two-step procedure in 
which velocity increments are first computed without a pressure gradient, and then 
corrected by imposing a pressure gradient that enforces conservation of mass at the 
end of each time step. This pressure gradient is extracted from the solution of a 
Poisson equation for pressure, which itself is derived by combining the full RANS 
momentum equation with the continuity equation for incompressible flow. 
 
Reynolds stresses (shear stresses arising from turbulence) are computed by 
supplementing molecular viscosity with an eddy viscosity, given by 
 

ε
ν ν

2kcT =  

 
where k is the turbulence energy (per unit mass), , is the dissipation rate (for k), and 
the coefficient c< = 0.09. The variables k and , are obtained from a k-, turbulence 
model (Launder and Spalding 1974), discussed in the Appendix, which employs 
separate equations for production and transport of these quantities throughout the 
flow. The empirical coefficients in these equations have been adjusted for improved 
accuracy in recirculating flow (see Appendix); and the associated production terms 
include contributions from shear and buoyancy, as discussed by Rodi (1980). 
 
For computing shear stress along no-slip boundaries, the boundary-adjacent tangential 
velocity profile is assumed to be logarithmic, in accordance with the conventional law 
of the wall. Along a free surface, however, the adjacent tangential velocity is assumed 
to have a vanishing normal derivative, which approximates a condition of zero shear 
stress. To accommodate fairly coarse grids, and to allow for the likely generation of 
turbulence by processes occurring far from the boundaries, vanishing normal 
derivatives are imposed on k and , along all physical boundaries (free or fixed) that 
constrain the flow. 
 
The fluid is assumed to be mechanically incompressible, which means that its density 
is unaffected by changes in pressure. The density may still vary with temperature 
though, and the effective density varies with the local concentration of undissolved 
gas (i.e., gas bubbles) suspended in the flow. For computing the downward force 
imposed by gravity, the effective density is approximated by 
 

)1()( φρρ −≈ Teff  
 
where ∆(T) is the temperature-dependent density, and Ν is the void ratio created by 
the bubbles. 
 
Gas-Transfer Equations 
 
For PAR3D applications involving air bubbles, the composition of the injected gas   
is taken to be 79 percent nitrogen and 21 percent oxygen. To facilitate gas-transfer 
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calculations, separate transport equations are used for each of the dissolved and 
undissolved gas components, making four gas-transport equations in all. In the 
formula for effective density, however, contributions from both of the undissolved 
gases are combined to yield a single value for the bubble-void ratio Ν. 
 
The air-to-water gas-transfer process can proceed in either direction, with dissolved 
gas becoming undissolved gas and vice versa. When the concentration of dissolved 
gas exceeds the local saturation concentration adjacent to a bubble (or free surface), 
dissolved gas comes out of solution and enters the bubble (or ambient air). Otherwise, 
undissolved gas leaves the bubble (or ambient air) and goes into solution in the water. 
 
Across any air-water interface with surface area A, the rate of mass transfer mt into 
the water is given approximately by 
 

( )CCAKm satLt −≈  
 
where KL is the liquid-film transfer coefficient (expressed with dimensions of length 
per unit time), C is the mass concentration (mass per unit volume) of dissolved gas in 
the water, and Csat is the mass concentration at saturation. 
 
A separate transfer equation applies for each gas involved in the transfer process, and 
the formula used for KL depends on whether the air-water interface is a free surface or 
a bubble surface. Along a free surface in particular, PAR3D employs a large-eddy 
approximation for KL, equivalent to that of Fortesque and Pearson (1967), 
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where D is the molecular diffusion coefficient for the dissolved gas in water. 
Otherwise, for bubbles, PAR3D uses a formula developed by Levich (1962), 
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where dB is the bubble diameter, and wB is the bubble velocity (relative to the water), 
approximated by 
 

( ) 2/12
0 2kwwB +≈  

 
with w0 representing the slip velocity (rise velocity) for a single bubble. Levich’s 
original implementation of this formula used only w0 instead of the turbulence-
dependent approximation proposed here for wB , and the latter may represent an upper 
bound for effective velocity of the bubbles relative to the water. Whatever the case, 
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the incorporation of k into the definition for wB produces a slight improvement in the 
agreement achieved between predicted and observed rates of gas transfer. 
In the PAR3D implementation of the Levich formula for KL, the bubble diameter dB is 
assumed to vary with the local static pressure p via the relation, 
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where patm is atmospheric pressure, and d0 is the nominal bubble diameter at one 
atmosphere. This adjustment accounts for isothermal reduction in bubble volume with 
increasing pressure, and the resulting dependence of dB on p implies that effective 
diameter gradually increases as a bubble rises toward a free surface. 
 
For bubble diameters ranging from 0.04 to 1.0 inches (1 to 25 mm), the slip velocity 
w0 varies by no more than a factor of two, with a median value of about 1 ft/sec, as 
discussed by Clift, Grace, and Weber (1978). Assuming that the latter value can be 
used by default for w0 , the nominal diameter d0 then becomes an empirical parameter 
that can be used to tune KL for the plumes generated by individual bubble diffusers. In 
principle, the value of d0 should be inferred from a weighted average of inverse 
bubble diameter in a given plume. In practice, the appropriate (empirically 
determined) value of d0 falls somewhere in the range of actual bubble diameters 
produced by a given diffuser. Whatever the case, d0 must be determined separately 
for each diffuser modeled with PAR3D, and it is the only parameter used to tune the 
rate of gas transfer for bubble plumes. 
 
Model Application 
 
Laboratory experiments were conducted in a 25-ft-diameter tank to determine the 
flow velocities2 and oxygen-transfer rates3 created by a coarse-bubble diffuser in 10 
to 33 ft of water. The injected gas was air, and the airflow rate was varied from 15 to 
60 standard cubic feet per minute (scfm). The diffuser was placed at the center of the 
tank, 2 ft from the bottom, and the water was purged of dissolved oxygen prior to 
each of the gas-transfer experiments. 
 
Velocity measurements were taken with an acoustic Doppler velocimeter, and then 
time-averaged for comparison with model predictions. Assuming the tank to be fully 
mixed at all times, a bulk oxygen-transfer coefficient  KL a  was inferred from the 
observed increase in dissolved-oxygen concentration with time, using the definition 
 

                                                 
2 Unpublished velocity measurements provided by Gary P. Johnson, November 1995, U.S. Geological 
Survey, U.S. Department of the Interior, Urbana, IL. 
3 Unpublished gas-transfer measurements provided by Charles W. Downer, Laurin I. Yates, and Calvin 
Buie, Jr., September 1995, ERDC Waterways Experiment Station, Vicksburg, MS. 
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where C is the concentration at time t, Cin is the initial concentration, and Ceq is the 
equilibrium concentration. The bulk coefficient  KL a  amounts to a volume-averaged 
product of the film coefficient KL with the transfer surface area A, and it has units of 
inverse time. Here the transfer surface includes the bubble plume and the free surface. 
 
PAR3D simulations were conducted using grids with a uniform vertical spacing of 
1.0 ft, and an average radial spacing of 0.962 ft. The diffuser was represented as a 
cylindrical region centered on the tank axis, 2.0 ft in diameter and 1.0 ft in height, 
into which undissolved air was introduced at the appropriate flow rate. 
 
In all cases, the nominal bubble diameter was set at d0 = 0.236 inches (6.0 mm), and 
simulated air injection was started impulsively in the quiescent tank. The subsequent 
time-development of the bubble plume, the flow field, and the dissolved-gas 
distributions then followed the dictates of the various governing equations. For the 
purpose of comparing predicted and measured velocities, the model was allowed to 
run only until the flow reached steady state. For comparing predicted and measured 
oxygen-transfer rates, however, the model was allowed to continue running until the 
dissolved oxygen reached equilibrium. 
 
Figure 1 shows a comparison of predicted and observed profiles of absolute velocity 
(velocity magnitude) for an airflow rate of 35.5 scfm in 10 ft of water. The PAR3D 
predictions represent steady-state values, and the experimental data are time-averaged 
values (taken over three-minute intervals). Vertical profiles are shown at four 
different radial positions (as measured from the central axis of the tank), and the 
relative agreement (or disagreement) achieved with experiment is typical of PAR3D 
predictions for bubble diffusers in general. 
 
As a rule of thumb, PAR3D (without adjustment) seems to predict velocities locally 
within a factor of two or better. Moreover, these velocity predictions are fairly 
insensitive to factor-of-two changes in the bubble diameter, the slip velocity, and the 
idealized radius of the diffuser. Refinement of the computational grid spacing by a 
factor of two alters the predicted velocities only slightly. 
 
Figure 2 offers a comparison of predicted and observed values for KL a, plotted 
against diffuser airflow rate. Predicted KL a results are shown for total water depths of 
11, 22, and 33 ft, while experimental data are presented for these depths, and for 31.6 
ft as well. The agreement between model and experiment is very good at airflow rates 
of 15 and 30 scfm, but somewhat less so at 45 and 60 scfm.   
 
The value used for the nominal bubble diameter (d0 = 6 mm) was arrived at by trial-
and-error computations with PAR3D. Factor-of-two decreases (or increases) in d0 
will shift the predicted KL a curves up (or down), roughly by a factor of three, without 
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significantly changing the shapes of the curves or the relative dependence on depth 
that is evident in Figure 2.  
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Figure 1.  Predicted () and observed (•) velocity profiles for coarse-bubble diffuser 
submerged in 10 ft of water in 25-ft-diameter tank 
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Figure 2.  Bulk gas-transfer coefficients for coarse-bubble diffuser  
submerged in 25-ft-diameter tank 

 
 
 
Conclusion 
 
The model application presented here involves only a single diffuser in a cylindrical 
tank, but PAR3D can also accommodate multiple diffusers and complex geometries. 
Given these added capabilities, the model offers a convenient means for evaluating 
the performance of bubble diffusers, either as mixers or aerators (or both), in diverse 
configurations and reservoir conditions (Bernard 1998). Tank tests may be necessary 
to establish nominal bubble diameters for the diffusers that are to be modeled, but 
otherwise PAR3D should require no further (empirical) adjustment by the user. 
 
For applications involving bubble diffusers in particular, the essential model input 
consists of a computational grid representing the tank or reservoir, along with the 
locations, airflow rates, and nominal bubble diameters for the diffusers in question. 
The volume occupied by each diffuser is also required, but this can be adequately 
represented by using the largest lateral dimension of the actual diffuser as the side   
(or diameter) of a rectangular (or cylindrical) grid region containing the simulated 
diffuser. 
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Concerning accuracy, experience to date (with bubble diffusers) suggests that PAR3D 
predicts gas-transfer rates reliably within about 20 percent, and time-averaged flow 
velocities roughly within a factor of two. Future work will examine the accuracy of 
PAR3D turbulence predictions.  
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Appendix 
 
PAR3D uses a variant of the k-, model developed by Launder and Spalding (1974) to 
account for turbulence in the computed flow. The turbulence energy (per unit mass) is 
denoted by k, and its dissipation rate is denoted by ,. The governing equations for the 
transport and production of these two quantities are 
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where the eddy viscosity (previously defined) is denoted by <T ; and  c1 , c2 , Φk , and 
Φ, are empirical coefficients. The rate of turbulence-energy production, arising from 
shear and buoyancy in the computed flow, is given by 
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where ∆ is the density; g is gravitational acceleration; u, v, and w are x-, y-, and z-
components of velocity; and the subscripts x, y, and z indicate spatial derivatives. 
 
Observing that, for hydrostatic conditions, the pressure p is related to ∆ and g by  
 

gp zzz ρ−=  
 
one can then replace ∆z g with - pzz in the previous expression for P.  Extending this 
observation to non-hydrostatic conditions in general, it is assumed that pzz can be 
replaced with the Laplacian of pressure in three dimensions, 
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Accordingly, the generalized expression for the production rate becomes 
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In the governing equations for k and ,, the empirical coefficients must satisfy the 
constraint, 
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where c< = 0.09 and 6 is von Karman’s constant. The recommended (standard) values 
for these coefficients are  c1 = 1.44,  c2 = 1.92, Φk = 1.0, and Φ, = 1.3,  consistent with 
6 . 0.433. 
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With the recommended set of values, however, the k-, model generally over-predicts 
turbulence energy in recirculating flow. To counter this tendency somewhat, PAR3D 
uses c1 = 1.59, c2 = 1.92, Φk = 1.0, and Φ, = 1.6, with 6 = 0.4.  Of these, the unaltered 
value for c2 comes directly from observed rates of turbulence decay (Rodi 1980), and 
the value chosen here for 6 lies in the conventional range for von Karman’s constant. 
Apart from Φk , whose value is also unaltered, only one of the remaining coefficients 
(c1 or Φ,) can be set independently, while the other then follows from the constraint. 
In particular, the larger values used by PAR3D for c1  and Φ,  tend to produce greater 
rates of turbulence dissipation, and lesser turbulence energies, than do the smaller 
standard values. 
 
To allow for turbulence production that is not dominated by boundary influences, 
PAR3D imposes a symmetry condition for k and , along slip boundaries (symmetry 
boundaries), no-slip walls (friction boundaries), and free surfaces alike. This requires 
only that normal derivatives of k and , vanish at these boundaries; i.e., 
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where n is the direction normal to the boundary in question. 
 
Along no-slip walls, the kinematic shear stress ϑw  imposed by the wall alone is 
computed from the conventional law of the wall, whereby 
 

2
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and the friction velocity u  is extracted from a transcendental equation that relates u  
to the tangential velocity u, the molecular viscosity<, and the normal distance ∗ from 
the wall; i.e., 
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where 

5.5≈C  
 
and the value given for C is appropriate for a hydraulically smooth wall (Rodi 1980). 
 
Strictly speaking, the law of the wall applies only to a fully developed, turbulent shear 
flow along a perfectly flat surface.  For typical PAR3D gas-transfer applications, 
however, the grids employed are usually much too coarse to resolve the actual near-
wall velocity distribution, and the logarithmic velocity formula merely provides a 
convenient (but rough) estimate for the friction velocity and the resulting shear stress 
at the wall. The conventional law of the wall also constrains the turbulence energy to 
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be  k  =  c<-1/2  u 2 near the wall, but this relation is not used in PAR3D applications 
because turbulence production is generally dominated by processes occurring well 
away from the walls. 
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